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a b s t r a c t

To simulate a suitable fracture network for hydrogeological modelling, input statistical data of the
individual faults, as well as fracture sets, should be determined first using either 2D sections or 1D
scanlines. Although the accuracy of this measurement is fundamental, exact determination is rather
problematic and is usually possible only at a particular scale. This paper introduces a coupled method for
computing length exponent (E) and spatial density (Dc), the two most essential parameters for modelling
fracture networks. To calculate the length exponent, data sets of at least two independent imaging
processes are needed. Utilizing different sensitivity thresholds of the two methods and the well-known
analytical form of a fracture length distribution function, its parameters can be calculated. To estimate
the spatial density of fracture centres in 3D, the series of intersections should be analysed as a fractional
Brownian motion and then calibrated with virtual wells simulated with optional modelling software. The
method makes fracture intensity logging possible along scanlines. Based on these approaches, there is no
need to import fracture parameters from the outcrop survey or from other parts of the reservoir, because
all geometric information of the fracture system refers to the rock body under examination. Using site-
specific parameters makes fracture network modelling more reliable.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Under appropriate physical conditions, rock deformation
produces brittle structures. Since the resulting fracture system has
an essential role in the hydraulic behaviour of the rock body,
reconstructions of both the structural evolution and the spatial
appearance of the fracture network are crucial. Faults regularly
appear at different scales, from the submicroscopic size to the kil-
ometre scale (Allègre et al., 1982; Turcotte, 1992; Ouillon et al.,
1996) with structural and geometric features comparable at all
magnitudes (Korvin, 1992; Turcotte, 1992; Long, 1996; Weiss,
2001). Such behaviour ensures the theoretical background of frac-
ture network modelling concept, in which structural data measured
at micro- or meso-scales are used to upscale information to larger
dimensions. Mathematical simulation of a 3D fracture network at
the reservoir scale, taking into account also the lithological and
structural setting, is especially important because hydraulically
active fracture sets are usually out of the scale of both micro-
stuctural and seismic measurements (Paillet et al., 1993; Childs
et al., 1997).

Simulation generally has two sequential steps. At the first
point, geometric parameters of the individual faults, as well as
All rights reserved.
fracture sets, must be determined. These parameters should
serve the firm base for the simulation itself using appropriate
modelling software. In the last decades, numerous algorithms
and programs have been developed (for example Long (1996),
Zhang and Sanderson (2002), FracMan (Dershowitz et al., 1993),
FracNet (Gringarten, 1998), RepSim (Tóth et al., 2004) etc.) to
solve diverse problems regarding fractured reservoirs. Whilst the
exact spatial definition of hydraulically active faults is desirable,
this is not generally possible and so in most cases a simulated
network is used for hydrogeological assessment. That is why
most approaches aim to generate a stochastic reconstruction of
a network of individual fractures (discrete fracture net-
workdDFN methods). To do so, in addition to structural
parameters (e.g. fault generations, kinematic indicators, fracture
filling mineral paragenesis) additional geometric parameters of
the fault set, such as length, aperture, orientation and spatial
density, are required. Although accuracy of determination of
these parameters is fundamental to the success of modelling,
measurements are rather problematic (Yang et al., 2004) and are
usually possible exclusively at a particular scale (La Pointe and
Hermanson, 2001; Zimmermann et al., 2003). Besides using
outcrops, geological cross-sections, borecores or thin sections for
measurement on 2D sections, parameter estimation is mainly
possible along 1D scanlines (Priest and Hudson, 1981; La Pointe
and Hermanson, 2001; Priest, 2004 and references therein),
supplied by well-logs.
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T.M. Tóth / Journal of Structural Geology 32 (2010) 878–885 879
The aim of the present paper is to introduce novel algorithms for
determining fracture length distribution and spatial density using
1D datasets. Since density can be defined in several different ways
(e.g. Long, 1996), the estimation methods should be harmonized
with the modelling system as well.
2. Geometric parameters of fracture systems

In addition to structural data, quantitative parameters also play
an essential role in describing fracture systems. A single fracture is
usually a finite, complexly buckled 2D surface that can be approx-
imated by planes (Chiles and de Marsily, 1993). In a homogeneous,
isotropic rock body under pure tensile stress, the shape of a fracture
is close to circular (Twiss and Moores, 1992); whereas in the case of
stratified sedimentary rocks, a more anisotropic appearance
(ellipse) is more common. However, the shape of fracture planes
may be extremely complex due to overlapping structural effects; in
order to make the simulated fracture network appropriate for
hydrodynamic modelling, some limitations must be used. Since
flow between smooth, parallel plates is the only fracture geometry
that is amenable to exact treatment for hydrodynamic modelling
(Witherspoon et al., 1980; Neuzil and Tracy, 1981; Zimmerman and
Bodvarsson, 1996), fractures should be approximated by thin discs.
And while the most regularly followed choice for fracture shape
under these constraints is a circle (‘‘penny-shaped’’), other
approximation estimates also occur. In what follows, fractures are
modelled by penny-shaped cracks by taking into account that many
other simulators (e.g. FracMan, Dershowitz et al., 1993) use
synthetic faults of a polygonal shape. A circle in 3D is explicitly
defined through the co-ordinates of the centre, the radius and
orientation. In the case of fault systems the spatial function of the
geometric centres, as well as the distribution functions of length,
strike and dip must be determined. Because hydraulic character-
ization of fracture networks presumes a positive volume of each
fracture, circles are usually replaced by discs with a certain aperture
(’’parallel plate model’’, Witherspoon et al., 1980). Symbols that will
be used through the modelling process are collected in Table 1.

One of the most important parameters concerning fluid
migration through fracture networks is the size (diameter) of the
fractures. Davy (1993), Bour and Davy (1997), de Dreuzy et al.
(2001), Bonnet et al. (2001), among many others, inferred an
asymmetric length distribution of fracture diameter, which,
according to the most widely used model (e.g. Yielding et al., 1992;
Min et al., 2004) follows the
Table 1
Symbols used in the text.

Variable Explanation of the variable

L Diameter of a penny-shaped fracture
D Fractal dimension in general
D1, D2, D3 Fractal dimensions of the fracture network traces

in 1D, 2D, 3D Euclidean spaces
Dc

2 Fractal dimension of fracture centres of a 2D network trace
Dc

3 Fractal dimension of fracture centres in 3D
E, F Parameters of the length distribution function
E Length exponent
A, B Parameters of the aperture function
L1, L2 Detection length thresholds of different fracture

identification methods
a1, a2 Detection aperture thresholds of different fracture

identification methods
a Dip of a fracture
b Strike of a fracture
r Size of a box in the box-counting algorithm
H Hurst exponent
f(n) Series of fracture intersection depths
w Length of an interval used for the R/S analysis
NðLÞ ¼ F*L�E (1)
power law function, where N(L) is the number of fractures with
a diameter of L; E and F are the parameters of the fracture length
distribution function.

Aperture becomes essential only if the simulated fracture
network is evaluated hydrogeologically, i.e. it is used for estimating
porosity and permeability tensor. Exact determination of aperture
is quite problematic (Vermilye and Scholz, 1995). The original
aperture can be significantly modified due to water-rock interac-
tion processes, either solution or precipitation. Aperture distribu-
tion also depends considerably on the orientation of the current in
situ stress field (Allen and Roberts, 1982), which makes its
measurement rather uncertain. Moreover, fluid migration in a crack
is also a function of the roughness of the fracture wall (Kumar and
Bodvarsson, 1990; Kumar et al., 1991; Liu, 2005), which further
complicates the estimation of the effective aperture values. To solve
this problem, Leckenby et al. (2005) suggest measuring the thick-
ness of entirely cemented fractures as ‘‘paleo-apertures’’; whereas
Keller (1998) uses computer tomography for the same purpose.
Even if the measurement is uncertain, aperture, like fracture length,
seems to follow a power law distribution function (de Dreuzy et al.,
2002; Ortega et al., 2006). Furthermore, between these two
parameters, a tight linear correlation can be assumed, one that is
based both on theoretical (Pollard and Segall, 1987) and empirical
(Barton and Larsen, 1985; Loiseau, 1987; Vermilye and Scholz, 1995;
Gudmundsson, 2000; Gudmundsson et al., 2001) results.
Specifically,

a ¼ A*Lþ B (2)

where A and B are the parameters of the aperture function. In
natural cases B s 0 values must be an error caused by inadequate
regression analysis and should not be used for modelling. The
ratio of maximal aperture and length (i.e. the slope of the linear
function in (2)) varies around 2 � 10�3–8 � 10�3 for joints and
3 � 10�3–3 � 10�2 for faults in the case of many different rock
types (Opheim and Gudmundsson, 1989; Vermilye and Scholz,
1995).

While definitions of fracture diameter and aperture are
relatively straightforward, there are plenty of approaches to
define the spatial density of fracture networks. Among these are
included fracture intensity, fracture density, fracture index,
fracture surface area, fracture intersection density and fracture
spacing. Detailed measurements by many authors (Barton and
Larsen, 1985; La Pointe, 1988; Hirata, 1989; Matsumoto et al.,
1992; Kranz, 1994; Tsuchiya and Nakatsuka, 1995; Roberts et al.,
1998) evidence that fracture networks usually exhibit fractal-like
geometry independent of lithology and structural evolution. This
means that not only the length and aperture data of fractures,
but also their spatial distribution depends on the scale of
measurement. Accordingly, fractured reservoirs can be deter-
mined by more and less closely fractured zones juxtaposed at
each scale; and so an adequate measure for spatial density of
fracture centres is their fractal dimension. A common way to
calculate fractal dimension is the widely used box-counting
method (Mandelbrot, 1983, 1985; Barton and Larsen, 1985; Bar-
ton, 1995), in which

NðrÞwr�D (3)

The number of boxes (N(r)) necessary to cover the fracture pattern
is proportional to the size of these boxes (r).

However, for successful modelling in 3D, the fractal dimension
of the cloud of fracture centres embedded in 3D Euclidean space
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is needed; this parameter is rather hard to measure and can only
be estimated. Because of structural geological reasons a fault
network usually consists of sets of sub-parallel fractures. In
a theoretical case of parallel fractures, the centres of their traces
on any 2D plain are the projections of the original 3D pattern of
centres onto the plane in question. In this case, following the
simple theorem of fractal geometry concerning the dimension of
the projection:

Dc
2 ¼ min

�
Dc

3; 2
�

(4)

Dc
2 ¼ Dc

3follows as long as Dc
3 < 2. Finally, in a real case, Dc

3 used for
modelling is defined as an average of Dc

2 data determined on several
planes (Tóth et al., 2004).

3. The model used-RepSim

Accordingly, fracture networks can be described using fractal
geometry in two respects. On one hand, length distribution follows
the power law distribution; while on the other hand, fractures
above any length threshold display a scale invariant pattern in 3D.
The discrete fracture network modelling system, called RepSim
(Tóth et al., 2004) is based on these assumptions, and follows the
methodological steps:

1. The model region is divided into unit cubes of the homogenous
parameter set. Each cell is characterized by Dc

3, E, F, A values and
a set of (a, b) data pairs. These cubes appear as the generator
elements of the following recursive algorithm.

2. Next, edges of the boxes are divided into rð˛NÞ, so that r3 new
cubes are formed.

3. From this set of smaller cubes, using the input fractal box
dimension and based on the relation NðrÞ ¼ r�D, the number
of boxes of edge length r that contain fracture seeds can be
calculated. The filled boxes themselves are selected at random
afterwards.

4. Division and selection of new sets of smaller cubes are repeated
in a recursive manner; while, in the final step, the centre points
of the last set of cubes are chosen as seed points. As the boxes
become smaller, the number of filled boxes increases similar to
the box-counting method.

Because of the recursive nature of the algorithm and the use of
the resolved box dimension, the final aggregate of points is a fractal
of the same measure (Dc

3). The points are finally used as seeds for
the penny-shaped fractures with random diameter, strike and dip
values of the measured distributions. Since fracture aperture is only
related to the hydraulic conductivity and does not influence the
network geometry, aperture is calculated for each fracture using
the A parameter and equation (2).

4. Determination of geometric parameters of fractures

Fractures can be considered as 2D objects embedded in a 3D
volume. Exact measurement of their geometric parameters is
possible for small scale samples by diverse techniques (Hellmuth
et al., 1993; Montemagno and Pyrak-Nolte, 1995; Frieg et al., 1998;
Wildenschild et al., 2002; McDermott et al., 2003; Onishi and
Shimizu, 2003); however, above very small scales it becomes more
difficult. Traces of fault systems can generally be measured on
different 2D sections (e.g. Zhang and Einstein, 1998), such as aerial
photos (e.g. Clifton and Schlische, 2003), outcrops, hand specimens
or microscopy via fluid-inclusion planes or cement filled micro-
fractures (Gomez and Laubach, 2006). Another way is using 1D
sections (scanlines) at diverse scales (e.g. La Pointe and Hermanson,
2001). Evaluation of the 2D network of fracture traces is an image
analysis problem (Gomez and Laubach, 2006); hereafter, only
assessments of 1D sections are focused on.

4.1. Evaluation of 1D sections

4.1.1. Estimation of fractal dimension (D3
c)

Well-log methods are often used to study fractured reservoirs
(Bean,1996; Marsan and Bean,1999; Liu, 2006). Borehole image logs
(e.g. BHTVdBorehole Televiewer) and diverse core imaging
processes, result in deterministic data sets of fractures with exact
spatial position (Tezuka and Watanabe, 2000; Yang et al., 2004). The
series of intersection points between the fracture network and the
borehole can further be analyzed as a point process. As has been
shown previously, above any length (or identically, aperture)
threshold, fractures define a scale invariant pattern in 3D. Since all
the above geophysical methods have their own sensitivity limits,
the series of fracture intersection points must have the same feature,
so it must be a fractal too. Fractal objects of this kind (fractal time
series) are widespread in geological and geophysical literature;
change of Earth’s magnetic field in space and time (e.g. Smirnova
et al., 2001; Wanliss and Cersosimo, 2006), seismic noise (Turcotte,
1992) or even mineral zoning (Bryxina et al., 2002) can be modelled
using self-similar and self-affine fractal time series. Typical exam-
ples of statistically self-affine fractals are fractional Brownian
motions (fBm). Increments of an fBm with parameter H (Hurst
exponent) are stationary and self-affine with a fractal dimension of
D ¼ 2 � H. On this basis, the point process that describes fracture
depth series is a self-affine fractal, which can be studied as a fBm.

There are several methods to determine the Hurst exponent
(Hurst, 1951) of a fBm. Among them, the most popular approaches
are the R/S (rescaled range), the R/L (roughness/length) analysis,
spectral analysis or variography, each of which aims to estimate H,
although the numerical result of the diverse methods may be
significantly different (Malamud and Turcotte, 1999; Arizabalo
et al., 2004). Based on our numerical experiments, as well as the
results of Cimino et al. (1999) and Telesca et al. (2004), we use R/S
analysis to estimate the Hurst exponent of a fracture intersection
point series. For a given f(n) point process (series of fracture
intersection depths in the present case), the algorithm applied
follows these steps (Telesca et al., 2004):

1. The linear trend is subtracted from f(n);
2. For any interval w, R(w) ¼ f(n)max � f(n)min (the range);
3. For the same interval, S(w) is defined as the standard deviation

of (f(n) � f(n � 1));
4. Let us define R/S(w) ¼M(R(w)/S(w)) with M as a mean value (R/

S is the rescaled range);
5. If the signal is fractional Brownian motion, it exhibits power-

law scaling so that R/S(w) ¼wH, where from H can be
estimated.

While such calculation leads to a proper fractal dimension of the
fracture intersection pattern along any scanline, there is no reason
to suppose a constant spatial density with depth. That is why
dimension should be logged so that each depth interval is charac-
terized by its own H value. The limit for dimension logging is
defined by the numerical experiments of Katsev and L’Heureux
(2004), who infer that R/S analysis is rather uncertain for short
series and suggest using at least 400-500 points (fractures) for
a reliable result.

4.1.2. Determination of length exponent (E)
Because the orientation and the depth dependent fractal

dimension are determined using well-log data, they are both
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fundamental site-specific parameters. However, the length
exponent is also essential in modelling; Yang et al. (2004)
suggest that fracture length cannot be determined directly and
should instead be obtained from an outcrop survey. Recently,
Priest (2004) introduced a numerical method to the calculate
fracture size distribution using scanline data. Mauldon and
Derschowitz (in press) alternatively suggest an indirect approach
to deduce the size distribution using measured transmissivity
behaviour. While the exact position of the fractures that inter-
sect the well can be detected by well-log data, their size is
difficult to document, because most fractures crosscut the
mantle of the core. As a consequence, length distribution is
considered to be the most uncertain of the parameters related to
hydraulic conductivity.

While diverse borehole imaging geophysical methods detect
fractures in similar scale intervals, they all have slightly
different sensitivity; each method with its own detection limit.
Consequently, fractures identified by a less sensitive method
must constitute a subset of those discovered by the other one.
The difference is the set of fractures between the two detec-
tion limits. It becomes clear when distinguishing fracture
density logs of the same well detected by two different well-
log methods, BHTV and core imaging, respectively (Fig. 1). In
this example, core imaging systematically identifies more
fractures with a constant difference (DN(L)) along the whole
well.

Keeping such a difference, as well as the detection limits
characteristic for the applied methods (L1, L2), parameters of the
fracture length distribution function (N(L) ¼ F * L�E, e.g. Segall and
Pollard, 1983; Heffer and Bevan, 1992) can be calculated (Fig. 2)
using

NðL1Þ ¼ F*L�E
1 (5)

NðL2Þ ¼ F*L�E
2 (6)

and consequently

NðL1Þ
NðL2Þ

¼
�

L1

L2

��E

(7)

where from

logðNðL1ÞÞ � logðNðL2ÞÞ
logðL1Þ � logðL2Þ

¼ �E (8)

and afterwards F obviously comes from (5).
While the detection limit usually is defined as an aperture value

(a1, a2), it is a linear function of length (Loiseau, 1987; Vermilye and
Scholz, 1995; Gudmundsson, 2000; Gudmundsson et al., 2001) and
so

a1

a2
¼ A*L1

A*L2
¼ L1

L2

in (7).
Accordingly, having data of two independent well-log

measurements, length distribution can be computed by the
following algorithm:

1. The well is subdivided into intervals for which fracture density
is calculated for both methods (in m�1);

2. The difference of these density values (DN(L)) is the parameter
proportional to the length exponent;

3. Using equations (5)–(8), E and F parameters can be computed
for each interval with homogenous DN(L);
4. Prior to calculations, the detection limit, as a function of the
aperture, should be determined for each well-log method.
5. Case studydMórágy granite body

The above techniques are introduced in the case of the Mórágy
granite body, which is the host rock of the radioactive waste
disposal in Hungary (Balla, 2003). A significant part of the
Carboniferous intrusion (Buda et al., 1999; Klötzli et al., 2004)
is covered by young sediments, and only a small portion of it is
available for outcrop survey. Petrographically, the igneous body
is composed of diverse granitoid subtypes, such as monzonite and
monzogranite, which, due to a polymetamorphic evolution under
greenschist facies conditions, exhibit a slightly foliated structure
(Király and Koroknai, 2004). During the subsequent post-meta-
morphic deformation events, a mutual fracture network developed.
Based on evaluation of the BHTV data of over 60,000 single frac-
tures representing 20 wells, two main groups of faults can be
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emphasized. One cluster shows very high dips (70�–80�), with
a NW–SE strike; whilst another shows a strike of ENE–WSW and
a similar dip (Maros et al., 2004). Most veins are filled in by
a complex sequence of common hydrothermal minerals (calcite,
dolomite, clay minerals, quartz and chlorites; Kovács-Pálffy and
Földvári, 2004). In places phases of a late-magmatic, hydrothermal
assemblage (gold, stibnite, barite among others; Gatter and Török,
2004) occur.
Length (m)
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Fig. 4. Fracture length distribution for the Erd}osmecske granite wall at meso-scale.
Misfit is caused by diminishing detection for small values and censoring at large
values. Inset: Histogram of fracture lengths prior to logarithmic transformation.
5.1. 2D Sections

To estimate fracture parameters of the Mórágy granite, 1D and
2D sections of different scales were used. 2D measurements were
acquired by evaluating digital images of the granite wall at the
village Erd}osmecske (Fig. 3). Three differing scales were analysed;
in addition to the sub-vertical wall (roughly 10 � 60 m in area), we
used 5 � 10 m-sized portions of the wall as well as hand-collected
specimens around 20 � 20 � 20 cm in size.

On the wall, w6500 individual fractures were digitized. Trace
length distribution follows the theoretically valid power law
behaviour with E ¼ 2.48. At extreme lengths, a significant misfit is
obvious (Fig. 4), emphasizing that detection is rather uncertain
close to the two limits. Similar histograms and length exponent
values can be obtained for the other scales; for segments of the
wall, E ¼ 2.46 � 0.2; whereas for the hand-collected specimens,
E ¼ 2.36 � 0.06 (Kaszai, 2003). Consequently, except for errors due
to uncertain detection and representativity mistakes at extreme
lower and upper values, trace length distribution follows a power
law with similar parameters and can be computed for each scale.
Also a linear relationship between length and aperture can be
inferred using measurements on the hand-collected specimens.
The slope of the regression line in (2) is A ¼ 2.7 � 10�2, a number
that is within the interval typical for faults for different rock types
(Opheim and Gudmundsson, 1989; Vermilye and Scholz, 1995).

The fractal dimension values are D2 ¼ 1.47 � 0.07 for the 12
segments shown in Fig. 4, While for fracture centres Dc

2 ¼ 1.56. In
Fig. 3. (a) The granite wall at Erd}osmecske. (b
the case of the whole wall, Dc
2 ¼1.56 � 0.07 for the segments and

Dc
2 ¼ 1.45 � 0.06 for hand-collected specimens (Fig. 5).
5.2. 1D Sections

For 1D sections, BHTV (Borehole Televiewer) and Core Image
(CI) data are used, representing a borecore that penetrated the
Mórágy granite complex to a 400 m depth. The core imager device
was developed by the Geological Institute of Hungary for high-
quality resolution optical scanning of borecores (Maros and Pásztor,
2001). The two imaging processes result in a continuous spectrum
for the same fracture systems with significantly different sensi-
tivity. They satisfy the assumptions of the above introduced 1D
5 m

) Digitized fracture network of the wall.
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calculations. Sensitivity thresholds for the two methods are 500 mm
for Core Imaging and 750 mm for BHTV, respectively. Consequently,
H and DN(L) can be computed along the well.

For calculations, the well was subdivided into 25 m-long
intervals, each of which consisted of at least 500 fractures,
a number sufficient to estimate a reliable Hurst exponent (Katsev
and L’Heureux, 2004). The CI can detect many more fractures than
the BHTV can; in fact DN(L) ¼ 550 for the whole well. Further-
more, variation of DN(L) is rather stable along the core (see
Fig. 1b) except for the middle sector, where CI data are unreliable.
Consequently, the whole well can be characterized by a single E
value. However, the estimated number (1.41) is much lower than
that measured on different 2D sections in another part of the
granitoid body, in the case of different wells in the region E varies
between 1.08 and 2.64 (Tóth, 2004), suggesting a highly hetero-
geneous internal structure.

In order to calibrate the relationship between the Hurst exponent
and the fractal dimension of the fracture centres in 3D (i.e. the
H¼ f(Dc

3) function), a series of fracture networks was simulated with
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Fig. 6. Examples of detrended fracture density signals calculated by virtual wells
Dc
3 ¼ 1.1, 1.3, 1.5, 1.7, using the RepSim code. Strike and dip data are

from BHTV measurements and E¼ 1.41. Each simulated network
was crosscut by a virtual well in order to obtain a series of fracture
intersections of at least 1000 points (Fig. 6). R/S analysis was used to
compute H for each series. Calculations were completed for 5 series
of each of 100-, 200-, 300- and 400-point-long segments to compute
averages and standard deviation values for each case. We found that
averages of H converged, while standard deviations decrease rather
quickly when an increasing number of points involved in the R/S
analysis. For all Dc

3 ¼ 1.1, 1.3, 1.5, 1.7 cases, variation coefficient s/
M < 0.05 if at least 400 points are used (Fig. 7). Based on the H values
calculated using these 400-point-long series, a simple linear cali-
bration results in a Dc

3 ¼ 2:63*H � 0:21 equation with a high
correlation coefficient (r ¼ 0.99). Based on this relationship, Dc

3
varies between 1.39 and 1.79 along the studied well, values
comparable to those obtained using the 2D measurements.

The fracture network model near the studied well clearly
exhibits more and less fractured zones, pointing to the advantage of
using adequate fracture parameters for each depth interval (Fig. 8).
D=1,3

D=1,7

 fractures

cross-cut networks simulated using the RepSim code, Dc ¼ 1.1, 1.3, 1.5, 1.7).
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each depth interval. Scale bar shows the appropriate Dc values for each 25 m interval.
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6. Conclusions

Modelling fractured reservoirs underground is a huge challenge
because of the difficulty of measuring model parameters. While
strike and dip of individual fractures can obviously be obtained by
evaluating BHTV or other imaging data, determination of the length
exponent and spatial distribution of scale-dependent fracture
systems has been a difficult problem.

This paper introduces a coupled method for computing E and Dc
3,

the two most essential parameters in modelling fracture networks
(Zhang and Sanderson, 2002). To calculate the length exponent, data
sets of at least two independent imaging processes are required.
Utilizing different sensitivity thresholds of the two methods, as well
as the well-known analytical form of a fracture length distribution
function, the required parameters can be calculated. To estimate the
spatial density of fracture seeds, the series of intersections as a fBm
should be analysed. Dimension logging is a rather sensitive way to
follow the variability of fracture intensity with depth. Because
coefficients of the H ¼ f ðDc

3Þ linear function may differ well by well,
or even interval by interval in the same well, using the above method
for calibration makes estimation of modelling parameters quite
flexible. There is no need to import parameters from another parts of
the reservoir; all information (E, F, Dc

3, a, b) concerns the rock body
under examination. Using only site-specific parameters makes
fracture network modelling more reliable.
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thesis, University of Szeged, Dept. Mineralogy, Geochemistry and Petrology, 52 pp.

Katsev, S., L’Heureux, I., 2004. Are Hurst exponents estimated from short or irreg-
ular time series meaningful? Computers and Geosciences 29 (9), 1085–1089.

Keller, A., 1998. High resolution, non-destructive measurement and characterization
of fracture apertures. International Journal of Rock Mechanics and Mining
Science 35 (8), 1037–1050.
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